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NASA TT F-10,llCl 

N.N.Koiseyev and F.L.Chernous*ko 

Discussion of cer ta in  problems ar i s ing  in t h e  theory of t h e  

behavior of f l u i d s  under conditions of weightlessness and in 

weak gravi ta t iona l  f i e lds .  

l a t i ons  of an i d e a l  fluid is formulated, and the  conditions 

of s o l m b i l i t y  of this problea; and the  propert2es of i t s  

spec t ra l  s t ruc ture  are discussed. 

though t h e  problem of snall osc i l l a t ions  theore t ica l ly  irr- 

vol-res no special  d i f f icu l t ies ,  p rac t i ca l ly  no effect ive 

solutions t o  it are known. 

sma l l  osc i l la t ions  of an i d e a l  f l u i d  i n  the presence of 

surface tension can be e f f e c t i v e u  solved when t he  surface 

tension i s  m a l l  i n  coiqarison with mass forces.  

l ibrium and natural osc i l la t ions  of a heavy idea l  f l u i d  i n  

a vessel  are studied under this ~ s s q : i o n .  

The problem of smal l  l i nea r  oscil-  

It is observed t h a t ,  al- 

It is  shown that the  problem of 

The equi- 

Recently, various problems of the behavior of f l u ids  under conditions of 

weightlessness and i n  weak gravitationdl f i e l d s  have become topical. 

a r t i c l e  i s  devoted t o  two aspects of the osc i l l a t ion  theorg. 

Sections deal  with the  formulation of t h e  problem of small osc iUat ions  of 

f luids ,  discuss t h e  questions of the so lvabi l i ty  of problems of this theory, 

and es tab l i sh  the  propert ies  of the  spectra. 

The present 

The f irst  two 

The other  Sections deal  with t h e  

%- Nmbers in the margin indicate  paginatiofi i n  the o r ig ina l  foreign text. 



osc i l l a t ions  of  f l u ids  under Tarious simplifying assanptions. 

Section 1. Formulation of t he  Problem of the  Theory of 
Osci l la t ions of an Idea l  Fluid 

1. If the  in t ens i ty  of volume forces F = VU i s  law, the  forces of surface 

tension become of decisive significance in problems of the dynamics of an i d e a l  

f l u i d .  The motion of an i d e a l  incompressible f l u i d  i s  described by Eulerts and 

continuity equations 

Q, 

(1.2) V v m b  

where v i s  the velocity, 4 i s  the f l u i d  density, p i s  the pressure, and t i s  

the time. 

A t  an immobile w a l l  (surface 7 )  the condition of non-leakage 

must be sa t i s f ied ,  where ny i s  the mi i  vector of t h e  normal t o  X. 

s-mface (surface SI, t he  condition of therxiodpamic equilibrium 

A t  t h e  f r e e  - 

P-aJifwna, K -  t l ~ , + i t &  (1.4-1 
must be sa t i s f ied ,  where K i s  the  double m e a n  curmture  of t h e  surface S ,  w h i l e  

F$ and R2 are i t s  pr inc ipa l  radii of curvature, and D is the coeff ic ient  of 

surface tension. 

S and C (contour r) the  normals t o  these surfaces form a constant angle y of 

A t  points  along t h e  l i n e  of in te rsec t ion  between the  surfaces 

contact, which depends s o l e b  ori the  material of s h e l l  C and on the  propert ies  

of the f lu id .  

fied as GS(x ,  y, z, t )  .= 0 and Gr(x, y, z )  = 0. 

The equation of the free  surface and t h e  s h e l l  w i l l  be speci- /lo72 

Then, this condition can be 

wri t ten as 
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where ?i = lo@,l 1VGT! i s  t h e  normalizing factor .  

f r e e  boundary Will ofter, be wr i t ten  i n  t h e  fom of z = Z(x, y, t ) .  

Hereafter, the  equation of the  

In this case, t he  condition (1.5) w i l l  become 

must be added t o  the  above conditions. 

the  veloci ty  vector onto t h e  normal t o  t h e  surface S; Nl i s  the  normalizing 

Here, v, = (v, n,) i s  the projection of 

factor :  . .  

2. F i r s t ,  l e t  us consider a s t a t i c  problem. If v E 0, then p = U + const 

and t h e  condition (1.4) will assume t h e  form 

(1.8) u - U K  = m s t .  

The constant i n  eq.(1.8) can be taken as zero without r e s t r i c t i o n  as t o  generali- 

ty. The expression U - oE results f r o m  t h e  ac+Lon of some nonlinear d i f f e r e n t i a l  

operator on the  function Z(x, y). 

librium pos i t ion  s a t i s f i e s  the  nonlinear partial  d i f f e r e n t i a l  equation (1.8) and 

the  boundary condition (1.6). 

must satisfy t h e  condition of isoperimetricity: volume of t h e  f l u i d  given. 

Hence, t he  form of the  f r ee  surface i n  equi- 

In addition, t h e  f r e e  surface ifunction Z(x, y)] 

Generally, this is  a d i f f i c u l t  problem and forms a separate domain of in- 

vestigation. 

c d c d a t i o n  of t h e  m o t s  of a transcendentd equation). 

Iet us assume thz t  mass forces  are absent; then t h e  f r e e  surface i s  a 

Here we will dwell only on one elementary case (reducing t o  t h e  

surface n i t h  constant curvature. Let us  fur ther  assume t h a t  the  region occupied 
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by the fluid has an a x i s  of spmetry  and t h z t  its mlume is V. 

possible solutions of the  boundary-value pr0ble.a Leqs.(l.B), (1.6)J w i l l  be a 

sp5ere whose line of in te rsec t ion  w i t h  t h e  surface T is  a two-dimensional curve 

(cf. Xg.h, gl35ng t h e  notation) and whose center is located at the  axis of 

Thus, one of t h e  

synmetry. 

kt us assume tha t  the  equation of t he  surface C has the  form of r = F(h), 

where r is the  distance of some point from the ax is  of s p e t r y ,  and h is the  

height from t h e  bottom of the  vessel. 

meters: t h e  radius of curvature R of the free smface and t h e  height ho of t he  /lo73 

free surface a t  t h e  wall. 

The problem reduces t o  finding two para- 

W e  ca.n deternine these wi th  t h e  a i d  of two equations: 

(1.9) 

The f irst  eqxation expresses the constancy of the f lu id  volume and the  second, 

the  consiancr of t he  coatact angle. 

I n  t h e  event tha t  t he  surface C i s  a sphere of radius R (c f .  Fig.lb), 

. I  



eqs.(1.9) reduce t o  

3. It nay happen that the free surface S does not i n t e r sec t  t h e  vessel  

In this case, surface ( t h e  bubble being located ent i re ly  w5-thin t h e  f lu id) .  

t h e  problem of s t a t i c s  i s  applicable only if mass forces are absent, since the 

pos i t ion  of t h e  bcbble i s  xnstable w i t h  respect t o  these forces: t he  application 

of even negligiblF small mass forces ca-Lses the buSble t o  move as an i n t eg ra l  

whole . 
If mass forces me absent, the sxrface S will Se a sphere of raiius 3.  

Let  u.s place t h e  or ig in  of t h e  spherical coordinate system r, 8, $ a t  t h e  center 

of t h i s  sphere. Then, l e t  us consider a surface 

6 - w.+) - h o )  -n, 
close t o  the  sphere S. Its  double mean curvature K ( E )  can then be presented as 

where 

We w i l l  next discuss cer ta in  properties of t he  operator L. 

consider t h e  equation 

To this end, l e t  us 

G==& (1.12) 

A simple check test readi ly  demnstrates t h a t  eq.(l .U) has t h e  following nor+ 

t r i d a l  solntions : 

5 



where P, (x) denote Legendre polynomials and Pi (x), associated Legendre functions 

of t he  f i rs t  kind. The theory of Legendre polynomials s t a t e s  t ha t  eq.(l.12) has 

no other  single-valued and bounded solutions. 

t h a t  i s  periodic with respect t o  $ may be represented by t h e  following l i n e a r  

combination of functions: 

In fac t ,  any solution of eq.(l.l2) 

@In sin ng. (01” cos w,, IC - 0,4.2, . . . 
where Gi(Q) satisfies t h e  equation 

A t  n = 0, this equation i s  a par t icu lar  case of Legendre’s equation. 

l y  independen’, solutions w i l l  be PI and &1 where PI i s  a Legendre polynombl and 

Q1 i s  a Legendre function of the  first E n d  ( the  function Q1 i s  not bounded). 

A t  n # 0, this equation determines the  associated Iegendre functions 6 and &1. 
From t he  theory of these functions, i t  i s  known (Bibl.2) that = ( e )  and Q”,(e) 

have a spec ia l  feature: t h e  function Q;, at no matter what r a t i o  of n t o  m; and 

the function , on condition t h a t  n > n. 

Its linear- 

Hence, t he  e q a t i o n  

a df 

has solutions 0- i n  the functional space f that is orthogonal t o  t h e  functions 

F1, E,, and E3. 

scr ibe infinitesimal nomments of the  sphere S as an i n t eg ra l  whole along t h e  

axes x, y, and z. In par t icu lar ,  t he  solution Fr describes the  movement of the  

bubble along the  z-axis t o  t h e  extent e, with an accuracy t o  within f i r s t -order  

The solutions (1.13) have a simple physical meaning: They de- 

small?ess. 

XeA, let  us assume t h a t  t he  flllid i s  subjected t o  a uniform f i e l d  U = az, 

where a is  the  f i e l d  strength, which we consider low (of t he  order of E) .  The 

l inear ized equation (1.8) can then be rewritten i n  dimensionless form 
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c a O - a f = @  &=airP/e). (1.15) 

Equation (1.15) i s  of t he  type of eq.(l.l&) sach t h a t  the  function f = 

no mtter how low the  in tens i ty  of the  mass forces  might be, eq.(l.l5) has no 11075 

bounded solutions.  

side the fluid. 

L. kt ns assume t h a t  the s t a t i c  problem is .~olw-ec-I_~ iAre. ,  that. the fern- of 

Thus, 

This means that the bubble cannot be i n  an equilibrium in- 

t he  free surface has been determined i n  one way o r  another. The f r ee  surface, 

i n  the  equilibrium position, w i l l  be denoted by S,. Let there  be motion i n  the 

neighborhood of this pos i t ion  and le t  'LS correspondingly l inear ize  the  problem. 

Then, eq. (1.1) can be rewrit ten i n  the  form of 

-- 3r 
at 

v (p--?;). u P' (1.16) 

where p' = p - po(x, y, z) - added t o  po - is the  pressure under equilibrium 

conditions . 
The equation of t h e  f r e e  surface w i l l  become 

@ o ( ~ s  & C  I )  -k K&(& q. %*) = 0, I I 
where Q i s  considered t o  be of first-order smallness. Xe denote, b;T N1, t he  

nomalizinrr f ac to r  

of t h e  function Po calculated f o r  points of t h e  surface q. 
expression P, i n  eq.(l.?), we have 

Substi tuting t h e  

The condition (1.17) must be sa t i s f i ed  along S, . 
Since, i n  View of t h e  incomp,-essibility 

(1.17) 
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It i s  readily shown t k a t  t F 5 s  constant i s  zero. In  the  zeighborhood of the  

surface %, we introduce the  curvil inear coordinate system N, e,  b: 

The equation of the  surface S, K i l l  be 6 = 0. 

nates  and the close spacing of t h e  surfaces S, and S, we rewrite, i n  l inear ized 

form, the equation of the f r ee  surface 

Uti l iz ing t h e  curvi l inear  coordi- 

Here, "(9, 9 ,  t )  = +(X(CY, P), U(m, PI, Z(CY, P) ,  SI. It, follows t h a t  6 = 

= -lb(a, F, t ) .  Since bds = 0 at any instant, we have 

C*d;-o. (1.u) 
i, 

I n  l inear ized form, the condition of thermodynamic equilibrium, sa t i s f i ed  along 

So, w i l l  be 

The boundary-value condition (1.5), i n  l i n e a r  formulation, reads 

Here, the  derivative i s  taken along t h e  noma1 to r, ly ing  i n  t h e  plane of con- 

t a c t  with %; k, and ky are the curvatures of t he  sections of the  surfaces So 

and r with the  plane normal t o  r e  

Thus, i n  i t s  l i n e a r  formulation, the  problem of osc i l la t ions  of the  f l u i d  

reduces t o  determining the  functions v(x, 7, 2, t ) ,  p' (x, g ,  Z, t ) ,  $(X, 7, Z, t )  

sa t i s fy ing  eqs.(l.2), (1.16), (1.17), (1.19) and the  conditions (1.3) and (1.20). 

I-. We w i l l  derive the condition (1.20) along t h e  contour T, which i s  
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s a t i s f i e d  by the f m c t i o n  $ becarzse of eq.(1.5). 

condition geometrically. 

It i s  s i q l e s t  to derive this 

Let US assume tha t  A i s  a point on t h e  contour r along which the wall F of 

the  vessel  i s  intersected by the  s t a t i c  f r e e  surface &,; rlF i s  the  In te rna l  

I1 
1 i 

Fig. 2 

normal t o  7 a t  the point A; nso i s  the  external normal t o  So at the same point  

(Fig.2). Mithout res t r ic -  

t i o n  of generali ty,  we can assume t h a t  the l i n e  of in te rsec t ion  of the  plane G 

with t h e  surface So coincides near t he  point A w i th  the l i n e  F' = const. Then, 

t h e  coordinate CY i s  the length along the curve on which So and G in te rsec t ,  i.e., 

along t h e  normal t o  

rips, = cos y e  

Let  us lay  t h e  plane G across t he  vectors ny, nso. 

on t h e  surface So. A t  the  point  A we have, by definit ion,  

Let  us assume t h a t  B i s  the point of intersect ion of the dynamic free 

surface S ,  t h e  vessel w a l l  C, arc€ the  plane G. 

distance f romthe  dynamic t o  t h e  s t a t i c  f r e e  surfaces, reckoned from the  noma1 

t o  the  latter. 

= -?$/sin y. 

normals 

consis ts  of three terms. 

Obviously, 4 will then be the  

Then, with an accuracyto within higher-order smallness, AB = 

We w i l l  next calculate the var ia t ion i n  the angle v between the 

on t r ans i t i on  from the point A t o  the  point  B. T h i s  var ia t ion by 

F i r s t  (Fig.2), the  s t a t i c  f r ee  surface ro t a t e s  through the  angle Ayl = 
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= ACk,, where k, Is the  curvature of the l i n e  of in te rsec t ion  of the surfaces 

and G. Second, the  surface of t h e  walls ro ta tes  

through t h e  angle Ayz = ABkr, where k - i s  the curvature of t he  l i n e  of inter-  

sect ion of the surfaces r ana G. 

together with the  s t a t i c  surface, makes the  angle 

account t h e  signs of t he  angles and the value of AB, we have 

Obviously, AC = BE3 cos y. 

<- L 

Xrci, i n  t he  plarie G, the  dpari .c f r ee  s-uface, 

= a*/&. Taking i n t o  

JW a AVC -b 4- &a - ( q l h l -  

On t h e  other  hand, the  var ia t ion by i s  

AY- ( b y I W A B -  - ( ~ v / W ( O I d n y ) ,  

where CT i s  the length of t he  path along the  l i n e  of in te rsec t ion  of 

Tnus, in %he general case, t he  condition over t he  contour r will be 

and G .  

If the  propert ies  of t h e  wall material  a r e  ident ica l  throughout, then by/W = 0 

and we arrive a t  t h e  condition (1.20). 

/1017 5 .  T h i s  problem can be simplified: Within the scope of the l i nea r  

theory, orAy po ten t i a l  flow i s  i n  question. 

the s e t  E of  solenoidal vectors v prescribed i n  T - the region bounded 5~ t he  

surfaces 7 and ,C&. 

To prove this statement, consider 

The f i e l d  v can be represented by superposition 

r&r+*v" (1.=) 

of t h e  po ten t i a l  f i e l d  u = V v  and t h e  vor t ica l  w f i e ld ,  where 'p i s  a function 

harmonic i n  T and w s a t i s f i e s  the  condition Vu = 0. 

Equation (1.21) can be realized by innumerable methods. This r a i se s  the  

y e s t i o n  of the most complete isolat ion of the  po ten t i a l  component. 

We will conditionally consider the subdivision complete i f  t h e  vector w is, 

i n  one way o r  another, orthogonal t o  the vector u. I n  order t o  make this defi- 
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n i t i o n  more precise, a metric must a lso be introduced i n t o  the  s e t  E, thus 

tramforming this s e t  i n t o  a space. It appears most log ica l  t o  u t i l i z e  the  

energy metric 
(vir * L ) t  = f &  

* 
Thus, i n  this case, completeness of mbdivisions means t h a t  (u, w ) ~  = 0. 

W e  will denote by E, t he  subspace of t he  po ten t i a l  vectors and determine 

the  s e t  E, of t he  vectors W E E  whose normal component i s  zero over Y + S .  

w i l l  pro.= t h a t  the set E, belongs t o  the  orthogonal complement of E,. 

end, we w i l l  u t i l i z e  Green's formda,  t h e  condition t h a t  t he  f i e l d  be solenoidal, 

and the  condition w, = 0 on -T and S,,: 

We 

To this 

( q w ) s e l  V ~ W d t = =  1 cpwnds=O.\ 
.x uq I 

This provides the  means f o r  the  s t ructural  i so l a t ion  of the  po ten t i a l  f i e l d  

component. F i r s t ,  we consider t he  following Neumann problem 

- 0  a r, (e-* (m) at Zl(ldS0. (1.22) 

The solut ion of the problem (1.22) makes every vector f i e l d  v correspond t o  the  

gradient f i e l d  u = WP. We w i l l  wri te  this f a c t  as: u = EUv, where fTU i s  the 

operator of orthogonal napping of E onto E,. 

formula w = v - u o r  w = n,v. 

The vector w i s  determined by the  

On having determined the  mapping operators, we return t o  our problem. 

Applying the  operators IT, and TI, t o  both s ides  of eq.(1.16) 

we have (because of the  l i n e a r i t y  of t h e  operation of orthogonal mapping) 

dw - = 0. 
at 
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Equation (1.23) y ie lds  t h e  Cauchy-herange in t eg ra l  

cw=- %. %.& 
81 P - 9 '  

Thus, the  pressare f i e l d  i s  determined solely by t h e  po ten t ia l  component of the 

velocity f i e ld .  

- Note. It i s  exactly this f a c t  tha t  warrants introducing the  energy metric 

and the  corresponding expression f o r  the po ten t i a l  component. 

It follows from eq.(1.25) that ,  from t he  viewpoint of t h e  l i n e a r  f i e l d  

theory, w does not change i n  t h e ,  meaning t h a t  t he  point vo r t i c i ty  i s  constant. 

Using the  def ini t ion of the potent ia l  component (1.22) we will rewrite 

eq. (1.17) : 

(1.26) 

The condition (1.26) shows tha t ,  i n  the theory developed here, t h e  f r e e  surface 

i s  determined uniqcely by t h e  poten t ia l  component. 

The pressure d is t r ibu t ion  along the free surface also i s  independent of w, 

so tha t  eq.(1.19) can be writ ten i n  the form of 

Thus, t he  problem reduces t o  determining t h e  function 

function t4. according t o  eqs.(1.3), (1.18), (1.20), (1.26), and (1.27). 

harmonic in T and t h e  

T h i s  proves tha t  t h e  assumption of poten t ia l i ty ,  usually adopted i n  l i n e a r  

problems, i s  a l o g i c a l  consequence of exactly this linearity. 

Section 2. Solvability of Problems of the Theory of Linear 
Osci l la t ions and Structure of t h e  Spectrum 

1. The problem fomulated a t  the end of the preceding Section can be re- 

duced t o  a one-operator equation. ht us use the  Xeumann operator H. The 

expression 
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i s  t o  mean t h a t  t he  function f(Q) [proxided this function s a t i s f i e s  the condi- 

t i o n  (1.18)l corresponds t o  a function harnonic i n  T, whose n o d  derivative 

becomes zero on Y’ and f (  Q) on S, . 
we& s ingular i ty  (Bibl.3). Hence, it is completely continuous. Its self- 

The operator H i s  posit ive-integral  with a 

condugateness derives f r o m  the  s_metry of Green’s function of the Neumann prob- 

l e m .  

The condition (1.26) makes i t  possible t o  wri te  

Using eq.(2.1) and considering that U(4) = -ok6 f o r  d l  6, we rewrite eq.(1.2?): 

Equation (2.2) i s  an integrodifferent ia l  equation containing only one unknown 

function $(CY, E, t) sat isfying ti 

i n  the  Trariables cy, e ,  has t h e  form 

fz+8,,,=o, . i i t ion  (1.20). T M S  condition, 
dn 

(2-3) 

where 3 i s  the  prescribed Pmction of the  point of t h e  curve r where t h e  

surfaces S, and C in te rsec t .  

2. A fundamental problem of the theory of o sc i l l a t ions  i s  t o  f ind  the  

fundamental o sc i l l a t ion  mdes. We will pose S = -f cos w t .  

Equation (2.2) has the  form 

pVi] (2.4) 

where I i s  a unit  operator. The operator L i s  self-adjoint. This f ac t  i s  

rather obvious, since the operator L descri’ctes a conse rn t ive  system. 

l e t  ils consider t h e  pa r t i cu la r  case where the  operator has the  form of eq.(l .U) 

First, 

and i s  prescribed with respect t o  a set of functions t h a t  depend only  on the  



width 8, and where B = 0. Then, 

where eo, 91 a r e  the  . d u e s  of t h e  angle 8 corresponding t o  the  vessel  walls. 

By determining t h e  sca la r  product 
i cr I 

(/1 g)= +rr6s, 
r, t 

we call prove t h e  self-adjointness of L: 
0. 

The pro03 f o r  t he  self-adSointness of L i n  t he  general case i s  j u s t  as ele- 

me~tary .  

t i on  by par t s .  The self-ad2ointness of d i r ec t ly  implies the self-adJointness 

of the  operator A from eq.(2.4). 

Its rea l iza t ion  requires using Green's f o r n u b s  instead of an i n t e g r a  

:?e W i l l  consider only the  case where the operator A is positive-definite. 

Since (Af, f )  = 3, where T! i s  the  poten t ia l  energy of t he  mass forces and of /lo80 

t h e  surface tension forces, our assumption W i n  mean tha t ,  when i n  an equilibrium 

posit ion,  the po ten t i a l  e n e r a  of t h e  system has a d iscre te  mMmm, i,e., t h e  

f r ee  surface of t h e  l i qu id  i s  s t a t i ca l ly  s table ,  

This leads us t o  the  standard problem of eigenvalues (2.&), where L i s  a 

wholly continuous, self-adjoint, posi t ive operator, and A i s  a self-adjoint 

posi t ive-def ini te  operator. On the  basis of the  known theorems of the  s p e c t r a  

a 



theory of l i n e a r  operators (3ibl.k), w e  can draw the  following conclusions: 

1) Tne spectrum of the  problem (2.4j i s  ciiscrete and of fLnite m u l t i -  

p l i c i t y ,  with a unique l imi t ing  point  1 ~ .  = Q). 
the  conditions considered here,  there  exists an b - f i d t e  m d t L p l i c i t r  

of eigenfrequencies w B  such that p, -.. Q) a t  n -, m and each eigenfre- 

quency corresponds t o  a f ini te  number of the  possible modes of funda- 

mental osc i l la t ions .  

T h i s  means tha t ,  under 

2) %.e spectrum i s  en t i r e ly  located on t he  real semiads,  i.e., a l l  

fundamental osc i l la t ions  are stable.  

3 )  The system of eigenfunctions i s  complete with respect t o  Friedrichsf 

norm. 

4) A l l  funriamental osc i l la t ions  and eigenfrequencies can be derived by 

means of Ritz's combination principle.  

- Note. The reasoning i n  this Section was essen t i a l ly  based on conditions 

of the  type of eq.(2.3), 

reasoning r e t a ins  i t s  va l id i ty  i n  t h e  space of the  functions orthogonal t o  the  

functions 

If t h e  bubble i s  en t i r e ly  within the  fluid, this 

Fa, and F3 f r o m  eq.(1,13). 

Section 3 .  Elementary Problems of the  Csc i l la t ion  Theory 

1. The findings of t h e  preceding Section ind ica te  that, fundamentally, the  

problem of small osc i l l a t ions  i s  not  par t icu lar ly  complex but i t s  ef fec t ive  

solutions are nearly unknown. 

An elementary problem of this kind i s  the  o s c i l l a t i o n  of a layer of weight- 

less f l u i d  (Bibl.5) bounded by a sphere ? of radius R2 and by a free surface, 

on the  assumption t h a t  t he  latter is a sphere of radius R,, concentric with 

(fig*3)* 
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We set q = R2/R1 and introduce the dimensionless spherical  coordinates r, 

9, X taking R1 as t he  charac te r i s t ic  scale and placing the  or ig in  of t he  coordi- 

nates a t  the  center of t h e  spheres S, r. Then t h e  condition of non-leakage 

0 a t  

The set of h a m n i c  functions sat isfying eq.(3.1) W i l l  then be 

(3-1) 

We Will seek fundamental osc i l la t ions  i n  t he  form of cn = P(r, 8, X) s i n  pt ,  

4 = fu'l cos ut ,  where a is a function of the  type of eq.(3.2). Then, t h e  

kinematic condition (1.26) and t h e  dp.amic condition (1.27) w i l l  read 

i==4&&&@+ at/=() at r-:& ; (3.3) 

where L i s  determined by eq.(l.ll). F.3iminating t h e  function f f r o m  eq.(3.3), 

we arrive at t h e  equation f o r  p. The f i n d l  result will be /lo81 

Note the  that osc i l l a t ion  frequencies are independent of m. 

fundamental osci l la t ions,  whose velocity po ten t i a l  i s  described e t h e  functions 

Hence, a l l  the  

@L2 D m  (m = 0, 1, ... n), have the  same frequency. Thus, t he  number pn has the  

Fig.3 
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mul t ip l i c i ty  2n + 1. 

of the  equation Lf = 0, which describe t h e  motion of t h e  bubble as a wble. 

The least nonzero eigenfrequency corresponds t o  n = 2. 

The value of = 0 corresponds t o  nont r iv ia l  solutions 

2. The example described above exhausts t h e  hown exact solutions of this 

Ckernous'ko problem. 

(Hb1.6) gives a general method f o r  the solut ion of the  problem of bu5ble 

The known approximate solutions also are few i n  number. 

motion, on condition t h a t  t h e  volume of t h e  bubble is small compared with t h e  

volume of t h e  f luid.  The depth of the  f l u i d  

i s  m a l l  (cf.  F'ig.4) i n  comparison with t h e  l i n e a r  dimensions of i t s  free 

surface, 

narrow-band asymptotic methods (Bibl.7). 

Another possible case might be: 

I n  this case, t he  problem can be greatly simplified by uti l izing; t h e  

To simplify the  calculations and t o  b e t t e r  i l l u s t r a t e  t h e  procedure f o r  

t h e  asyrptot ic  analysis of the  problem, l e t  us consider the  elementary case of 

a weightless f l u i d  i n  an aAsymmetric vessel. The free surface represents a 

sphere when i n  equilibrium posit ion.  Ne w i l l  consider only axisymmetric osci l -  



l a t i o n  modes. 

f o r  t h e  vessel walls w i l l  be wri t ten in t h e  fom of 

The equations f o r  t h e  f luid surface i n  ecpilibrim posi t ion and 

equation 

and the  function $( t ,  0 )  from t h e  conditions 

(3.5) 

where 0, i s  the  value of t h e  angle F3 a t  t h e  point of contact between t h e  unpep  

turbed free surface and the walls. F i r s t  l e t  us consider t he  subproblem of de- 

termining the  function Q( t ,  r, @) which satisfies eq.(3.5), the  condition (3.6), 

and t h e  condition 

(3.10) 

Me then construct the  asynp- 

colt. n, e) =+w, e). 

where a i s  a prescribed function of i t s  variables.  

t o t i c  solution of this problem for c + 0. Iet us subs t i tu te  r = R + FF i n t o  

Employing t he  notat ion of eq.(3.12) we can write [see eq.(1.11)] 

The condition (3.6) can be wri t ten as 

W e  then construct the  solution of the  subproblem i n  form of the  series 
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. .  

I .  

For Pi,, we have 

Hence, a. = a ( t ,  9). 

€& exactly the  same reasoning, we obtain 'PI 0. The function Q, satisfies 

the  following problem 

The solut ion of the  

The remaining t e r n  

problem (3.l.4) i s  given by the  formula 

of t he  series (3.13) are not as easy t o  calculate. /lo83 

Generally, t h e  series (3.13) diverges. 

conditions f o r  i t s  asymptoticity. 

and confine ourselves t o  calculating Po and C2. 

we have 

Koiseyev (Bibl.7) described t h e  a p r i o r i  

I We will consider these conditions sa t i s f i ed  

&turning t o  the  old variables, 
I 

Vith the  aid of e ~ ~ ( 3 . 1 5 )  we can rewrite eqs.(3.7) and (3 .8 )  

Thus, t h e  problem i s  reduced t o  finding two functions t h a t  do not depend on t h e  

radius vector. 

To f ind  t h e  eigenfrecpencies, we pose a = e(9)eW: $ = ?(9)eJ?t after which 

i t  follows from eq.(3.16) t h a t  

19  



T h i s  problem i s  Fquivalent t o  the  followhg eigenvaltle problem: 

&(A + 2)  ( ;A8  + 2'07 

The latter problem i s  fundamentally simpler than the  i n i t i a l  problem, since the 

sought function B depends ow on the  variable 8. 

Section 4. Case of Iow Surface Tension (Basic Eauations 
and S t a t i c  Problem) 

1. The problem of small osc i l la t ions  of an i d e a l  f l u i d  i n  t h e  presence of 

surface tension, fomulated in Section 1, can be ef fec t ive ly  solved whenever t h e  

surface tension i s  low compared with t h e  mss forces.  

premise, the equilibrium and the  natural  o sc i l l a t ions  of a heavy i d e a l  f l u i d  

(standing waves) in a vessel Will be examined below. 

statements, we considered only potent ia l  f l o w  i n  Section 1. 

Proceeding from this 

Because of the  above 

The velocity po ten t i a l  of ~(x, y, z, t )  i n  t h e  flow region s a t i s f i e s  the 

Laplace equation and, a t  t h e  walls of the  m?ssel Z, t h e  condition of non-leakage 

h - 0 ,  drqiax-o at z. (4.1) 

where PI i s  t h e  i n t e r n a l  normal to the  vessel wall. 

axis  i s  directed ve r t i ca l ly  upward and t h e  plane z = 0 coincides with the  

surface of t he  f l u i d  a t  rest, in t h e  absence of surface tension (0 = 0). 

t h e  free surface z = C(x, y, t), t h e  kinematic and dynaldc conditions (g  = 

accelerat ion of gravity) 

];et us assume tha t  t h e  z- 

A t  

are sa t i s f i ed .  The second condition i n  eq.(4.2) i s  a consequence of the  Cauchy- 
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Lagrange in t eg ra l  and of eq.(1.4), w h i l e  ho i s  a constant. 

where t h e  subscripts x, y denote p a r t i a l  derivatives; the upper sign must be 

used in the event t h a t  t he  f l u i d  i s  located below t he  surface z = 5 ,  and t h e  
.+%< 1 

lml- s%gn* if the fl’!!cl is Incat& ahnm the s1;rface z = 5.  m.e fmctior? 

C(x, y, t) may be ambiguous and its different branches correspond t o  d i f fe ren t  

signs i n  eq.(4.3). 

The constant ho will be so d e t e d n e d  that ,  in t h e  equilibrium case ( “cp  = 0) 

t h e  po ten t i a l  can be taken as independent of t. Prescribing t h e  s t a t i c  form of 

the  free surface in t h e  form of 

s = t = --s +a&&. (4.4) 

we obtain from eq.(4.2) t h e  equation for h: 

pnh + a K ( h )  0. (4 -  5) 

The bow-dav condition f o r  eq.(4.5) i s  t he  prescribed contact angle f o r  t h e  

contom rl, where t h e  free surface osculates t he  walls. After having d e t e p  

mined h(x, y), it i s  possible  t o  f ind  ho i f  it i s  assumed t h a t  the f l u i d  volume 

is the  same no matter whether B = 0 or D # G. 

I n  t h e  dynamic problem, t h e  free surface w i l l  be given as 

(4.6) 
The osc i l l a t ion  amplitude i s  considered d l  and eqs.(4.2), (4.3) a r e  linea* 

ized with respect to t h e  functions 0, f ,  w h i l e  s h d t a n e o u s l y  referr ing them to 

the  s t a t i c  free surface [eq.(4.4)1: 

(4.7) 
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where Kl ( f )  i s  the  l i n e a r  - with respect t o  f - p a r t  of t h e  increment K( h + 

+ f )  - K(h), which, on using eq.(4.3), we can write i n  the  form 

I n  addition, the function f s a t i s f i e s  the homogeneous boundary condition of t h e  

type of eq.(l.X)) f o r  t h e  contour r,. The resu l t ing  boundary-due problem f o r  

t h e  functions m, f i s  l i n e a r  and homogerieous; however, prior t o  i t s  solution, 

it i s  necessary t o  f ind  the  function h(x ,  p) s a t i s f - ~ n g  the  nonlinear 

equation (4.5). 

2- We introduce the dimensionless parameter 

e - fi/ 4 N i k h  (4.9) 

where 4 i s  the charac te r i s t ic  l inear  dimension of the vessel, which we W i n  

consider small. Then eq.(4.5) will become 

. h  
.. 

and w i l l  contain a small parameter with higher-order derivatives.  

boundary condition f o r  this equation (angle of contact between wall and f r e e  

surface) i s  given for an a priori unknown (generally speaking) three-dimensional 

contour TI. 0 and t h e  contour r1 changes i n t o  

t h e  planar  contour 

The /I085 

I f  CJ = E = 0, the s o l u t i m  i s  h 

over which the plane z = 0 i n t e r sec t s  the vessel  walls. 

Ve mike the log ica l  inference tha t  the contour i s  close t o  when 0 C 

< e + 1, while the solut ion of eq.(4.5) s ign i f icant ly  d i f f e r s  from zero o n b  in 

t h e  narrow region near the  contour r,. 
the  f a c t  t ha t  the  approximate solution obtained below exhibi ts  such properties.  

To determine the solution, we W i l l  make use  of t h e  boundary-layer method 

(Bibl.8, 9). 

The jus t i f i ca t ion  f o r  this hypothesis i s  
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In to  the  xy-plane, l e t  us introduce t h e  following curvi l inear  orthogonal 

coordinates: n, the  ciistmice ahiig;, t h e  n o d  ~ T G I ~ I  ;r given point  $1 t o  the co* 

tour  r; s, t he  a rc  length of t h e  contom r f r o m  the  point taken as the  or ig in  

of coordinates, along the  noma1 going through the  point K (Fig.5). Note t h a t  

specifying t h e  free surface i n  the  form of the  function h(n, s) displays two 

shortcomings: first, the  coordinates n, s are determined randomly f o r  the poin ts  

separated from the  contour r by distances of the  order of i t s  radius of c m -  

ture; second, t he  function h(n, s), as was pointed out above, may be ambiguous. 

These shortcomi-ngs can be eliminated i f  t h e  free surface i s  specified i n  para- 

metric form. 

simplify the  calculations without affect ing t h e  final. results. 

assume tha t  the  contour 

ture everywhere great ly  exceeds e.  

xy adjoining the  contour 

unambiguously defined. 

Ye wil l ,  however, emplq the  coordinates n, s since t c s  Will 

We w i l l  o n l r  

has no vertex points  and tha t  t h e  radius of i t s  c m  

Then, in the  n a r r o w  region 

and havingthe width-  e, the  coordinates n, s are 

of the  plane 

Next, we perform t h e  transformation of the prolongation of h = sH, n = cu, 

A t  t he  boundary contour, because of t he  finiteness of t h e  angle of con- s = S. 

t ac t ,  we have h, ;; H, - 1. 
- 4. 

Koreover, i n  the region DE w e  c lear ly  have u - s - 
W e  w i l l  assume t h a t  the  function H(u, s) and a l l  of i t s  derivatives are 
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f in i t e  [of the  order of O( 1) 1 i n  DE. Then we obtain, i n  DE, t h e  estimates 

h el, hm N 1, ha N t, @e)", Pis Am - d-', (4.10) 
c 

Iet us now pass t o  t h e  variables n, s i n  eq.(k.5); taking i n t o  account eqs.(L.S), 

(!+.IC), and the  e35Zent. eqrral i tg (an,Qx)" i ( ~ Z I / * ) ~  = 1, we a-i- rrAve at t he  

equation 

which i s  val id  i n  DE with an accuracy t o  within higher orders of smallness. 

Here t h e  sign i s  selected on the  basis of the  same reasoning as f o r  eq.(4.3). 

Derivatives with resyect t o  s do not enter in eq.(l+.ll) so t h a t  this re la t ion  

my be regarded as an ordinary d i f fe ren t ia l  equation. 

t h e  eqJ.atA.on of t h e  free surface f o r  the  case of a plane w a l l  (Bib1.1). 

It has the  same form as 

Let us write t h e  first in t eg ra l  of eq.(&.ll): /lo66 

hs 
2 
-u (4.32) 

Clearly, h, e at a distance from the  contour T, and i n  eq.(4.12) t h e  

upper s ign must be taken, since t h e  l iquid l i es  below the  free surface. 

with an accuracy t o  higher orders of smallness, we have C, = t 2 e 2 .  

0, h 

Hence, 

A t  t he  

poin ts  where 

have h, = 03 9 

'we then 

of h: 

t h e  f r ee  surface i s  ver t ica l  

lhl = & = tqm 
solve eq.(k.l2) with respect 

t he  sign changes in eq.(4.12) and we 

t o  h,, taking i n t o  account t h e  value 

Figure 6 i l l u s t r a t e s  t h e  elementary forms of t h e  free surface at t h e  w a l l ,  f o r  

various angles of inc l ina t ion  of the  walls and various angles of contact. 

evident t h a t  t he  signs of h m d  h, are opposite at lhl < h; but i den t i ca l  a t  

lhl > hx-. 

It i s  

This predetermines the  select ion of t h e  p lus  sign i n  the  preceding 

zr, 



formula, in every case, 

( L O U )  

Mote t h a t  it follows from eq.(4.13) t h a t  Ih! 5 2cs. Integrat ing eq.(4.13), we 

have 

Figure 7 shows the  in te rsec t ion  of the f r e e  surface [ eq. (4.4)j witin tine 

v e r t i c a l  plane z, n. Here, n i s  the internal  normal t o  the  planar contour r in 

Fig. 6 Fig. 7 

t h e  plane z = 0, N i s  t h e  i n t e rna l  normal to  the vessel  wall, and t h e  included 

angle 6 i s  the  angle of inc l ina t ion  of the  walls t o  the  v e r t i c a l ,  and 5 + -ho 

a t  n - Q). 
a t  the  point  P of contact of the free boundary with the  w a l l  

If t h e  contact angle y is  pre-scribed, w e  have the  following condition 

A simple geometric examination of Figs.6 and 7 shows t h a t ,  i n  all cases, a t  /1@7 

t he  point  P we have sgn h = sgn cos (y + 6), while sgn sin (y + 6 )  is opposite 

t o  the  sign which must be selected in eq,(&.l2). Considering t h i s  and substi- 

t u t ing  eq.(4.15) in to  eq.(4.12), we find the value of h a t  the w a l l  ( a t  point P) :  
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On the  o ther  hand, the  points  on the  w a l l  sa t i s fy ,  i n  the  neighborhood of t h e  

poin t  P, t he  equatipn n = -2 t an  6, or 

n=nr=(I[lr--b)?*+ (L.17) 

SiibstitiitTng eqs.(&.16), (k.17) ir?tc eqs(!+&), w e  f ind the  constant 

Let us now estimate the  function h and i t s  derivatives at  a cer ta in  distance 

from t h e  walls. A t  n - PV, eq.(h.%) dll yie ld  

--IC ln 13 - yi=Tmsjq =W). 
whence, on resolving the  rad ica l  f o r  h < &E, we have 

h - Ite"h, k .E. O(1) > 0. I\ 

S imilar estimates are valid f o r  t he  derivatives a t  f i n i t e  distances from t h e  

This conclusion i s  not completely rigoroils, since we used an approximate soh- 

t ion which i s  v a l i d  only Ln t he  region DE. However, outside &, t h e  der ivat ives  

h,, h, are s m a l l  and eq.(4.5) can be linearized, select ing the  minus sign i n  

eq.(!+.3) ( the  l i q u i d  at a distance from t he  walls i s  located below t h e  f r e e  

surface). This W i l l  yie ld  the equation h = t2e2Ah whose solution, within the 

region, m y  not have pos i t ive  maxima or negative minima (Bibl.10). Therefore, 

i f  the above estimates hold for a cer ta in  contour, they w i l l  also hold every- 

where within t h a t  contour. Accodingly, we may assume tha t  h = 0 outside the  

region DE, w i t h  an accuracy t o  w i t h i n  an error smaller than degree of E .  

L e t  us next determine ho from the condition v = hoD, expressing the  equali- 

t y  of f l u i d  volumes at  o = 0 and IS # 0 ( v  i s  the f l d d  volume between the  
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I 

surface z = i: and the  plane z = -ho, D i s  t h e  area of t he  region q bounded b~ 

$he contour r i n  Fig.5). ht us assme t h a t  S i s  the  area i n  the  plane zn 

bounded by the  wall, by the  free surface, and by the  l i n e  z = -ho (Fig.7). 

Then, obvio-sly, 
0 8 S(8)dr. 

r 

I n  calculat ing S, it is more convenient t o  perform the integrat ion with respect 

t o  z, since h(n) may be an ambiguous Fmction, whereas t h e  function n(h) 

from eq.(4.&) i s  unambiguous: 

11088 

H e r e ,  in tegrat ion by parts was performed. 

(4.13), and (4.16): 

Hereafter, we will use eqso(4.17), 

E 
i l 
2 2 

S!BE --tan&h,F+- 

( L l 8 )  

Substi tuting i n  the  equality v = h a  the formulas f o r  v and S, we have 

h== 

Equation (4.19) takes  i n t o  account the dependence of the  contact angle and of 

t h e  w a l l  inc l ina t ion  on the points  of the wall. 

We W i l l  then transform eq.(L.8), passing t o  the variables rA, s, u t i l i z i n g  

eq.(&.5) and t he  estimates (L.10), and discarding t h e  d u e s  of kjgher-order 

smallness with respect t o  e :  
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where fi is  the  Laplace operator i n  the xy-plane. 

are sinply the  direct ion cosines of the ii'iterrial i i G i d  n t o  t h e  eona&-&- r, 

plo t ted  from the  point X(x, s) (Fig.5) with the  coordinate axes. Outside the  

region DE, eq.(6.X)) f i e lds  - taking the  select ion of the  sign i n t o  account - 

The p a r t i a l  derivatives n,, n, 
I 

Kl = - M .  

1. Iet us solve the problem of  the na tura l  osc i l la t ions  of a f luid,  given 

t h e  following addi t ional  assumptions: 1) the  vessel  wal ls  are v e r t i c a l  i n  t h e  

I neighborhood of the free surface, i.e., N = n, 6 = 0 i n  the neighborhood of t h e  

contour r; here  h is an unambiguous function x, 7 and the  f l u i d  everywhere i s  

located below the  f r e e  surface; 2) the contact angle i s  constant: y = const; 

3 )  ah/& = 0, i.e., h = h(n) everywhere in the  neighborhood of t h e  contour I-; 

, 

then TI i s  a planar contour and its projection onto t h e  xy-plane coincides wi th  

r. T h i s  last assumption i s  correct i f ,  f o r  example: a )  t he  vessel walls i n  the 

neighborhood of r form a c i r cu la r  cylinder (then the  vessel  need not even be 

axisynmetric), b) t h e  vessel walls i n  t h e  neighborhood of r are plane, c )  y E 

f n/2 f o r  an a rb i t r a ry  vessel. 

These assrmrptions greatQ simplify the  condition (1.20) f o r  t h e  contour r. 
In fac t ,  f o r  t he  points  on the amamic free surface w e  have 

f 1089 

where k is  the  u n i t  vector of t h e  z-axis, and the  gradient i s  taken with respect 

t o  the  variables x, 9. Considering t h a t  h = h(n), we can write 

28 



On t h e  other  hand, - h n ( l  + ht)-* = cos y by v i r t u e  of t h e  conditions f o r  the  

ststic: free sxrfaze . 
respect t o  f,  we w i l l  obtain t h e  condition a f / h  = 0 a t  r. 
simplified var iant  of t h e  condition (1.20), under t h e  above assumptions. 

Rerefme, - d t h t e l . .  ir; t he  H m a r  sppmfiat ioi i  k i t h  

T h i s  condition i s  a 

Passing now t o  the  solut ion of the  problem of natura.2. osc i l la t ions ,  we pose 

9 = ek”@.(r, tl, # 

where w is the  sought eigenfrequency. The function Q i s  h m n i c  i n  the  region 

occupied 

stead of eqs.(4.7) we then have, a t  z = h - hot 
the  f lu id ,  and satisfies t h e  condition 3 P / 8 J  = 0 a t  t h e  wall. In- 

Koreover, we have the  condition ;3F/3n = 0 along r. 
the  eigenfrequencies w at which the  l i n e a r  homogeneous boundary-value problem 

f o r  F, F has a nonzero solution, and to f ind  t h e  functions a, F themselves i n  

tb;is case (eigenfunctions) . 

The problem i s  t o  determine 

I n  t h e  absence of surface tension (e = 0, h = 

problem of na tura l  o sc i l l a t ions  are well-known (Bibl.3). 

= 0 )  t h e  proper t ies  of the  

I n  this case, we 

have a d i sc re t e  spectrum wp, of natural  frequencies (rn = 1, 2, .. .) and the  COF 

responding eigenfunctions @= form a complete and orthogonal system i n  t h e  

region 0, bounded by t he  vessel  w a l l s  and the  plane z = 0. For simplicity,  we 

will assume t h e  frequencies t o  be nonmultiple. 

z = 0 bounded by the  contour r, at CT = 0, we have instead of eqs.(5.l), (5.2) 

In the  region D of t h e  plane 

Since t h e  walls are ver t ica l ,  it follows t ha t  S , / a N  = aG,/an = itF,/%i = 0 f o r  

t h e  contour r. 
. 

Note also tha t  t h e  functions F,(x, y )  form a complete and 



orthogonal system i n  the  region D. Ne subordinate these t o  the  condition of 

norming 

The eigenfrequencies w, and the  functions P m ,  Fa of the  norperturbation 

problem (0 = e = 0) w i l l  be assumed as h o r n .  

problem ( 6  # 0), close t o  t h e  m-th natural osc i l l a t ion  i n  the norperturbed case, 

The solution of the perturbation 

L-i 

The Iaplace equation, t h e  condition at t h e  w a l l s  f o r  3 ,  and t h e  condition 

aF/an = 0 f o r  f are then satisfied. Equations (5.1), (5.2) must be removed to 

the  region D of t h e  plane 4y, and eqss.(5.6) m u s t  be subst i tuted there;  a l l  

functions must be expanded i n  a ser ies  with respect t o  t h e  functions of t he  

orthonomed system Fa. Equating t h e  coeff ic ients  f o r  i den t i ca l  degrees of B, 

w e  Will f ind the required corrections for t h e  frequency (A,  u )  and t h e  eigen- 

functions (Ak, I&, ak, bk).  

The Fourier coeff ic ients  of the  function g ( x ,  y), determined i n  t h e  region 

D, a r e  calculated f romthe  formula 

ii- 

If “g” = o(e2), where the  nom i s  construed as t h e  space La, then I& 1 = O(B’), 

a function which can be neglected i n  eqs0(5.l), (5 .2 ) .  Xote t h a t  since h, h, 

are zero outside DE, w h i l e  ins ide  DE the estimates (4.10) apply [ the  area of t he  

region DE beingO(s)j, then i’h” - E , 2 h n i ’  - 5 ;  below, tkris W i l l  be taken i n t o  

ac cocnt 

2 .  Since the  projection of t he  free  surface onto t h e  plane z = 0 coincides 

with the  region D, eqs.(5.1), ( 5 . 2 )  may be canceled over the  ve r t i ca l  t o  Do 
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For any function f(x, y, z )  on the  free surface z = h - he, we have I 

I . i 5 . d  

where t h e  nom of the  discarded terms i s  smaller than O(e2). Converting Q, @,, 

c y ,  b, 2eco.Ylir?g t o  eq*(5.8) 2Pd Z t i U Z i P !  eqS.(!+.a) zn-23 Q,, = -Gxx - % Y ,  = 
have instead of eqs.(5.l), (5.2), 

-Ma)- (Vrc. v (5.9) 

Here, t h e  terms with the  nom o(e2) are discarded and t h e  operations n, A are 

calculated with respect t o  the  variables x, 9. 
, 

Since t h e  walls are ver t ica l ,  eqs.(5.3), (5.4), (5.6) yield, f o r  t h e  

contow r, 
( 5 . W  - m m -  BFm 

a n &  --- 
an 

I .  

~ 

In t he  region DE, t h e  der ivat ives  (5.U) are O(e).  

Qz from eq.(5.10) i s  of t h e  order of e2 i n  DE and is zero outside DE, i.e., it 

Therefore, t h e  last tern i n  
I 

~ 
can, be discarded without impairing the accuracy. 

ilnalogously, considering t h a t  i n  this case h, = 0, h, - 1 in DE, we con- 

clude t h a t  (oh, @,) - e i n  DE, so that  t he  last  tern i n  & from eq.(5.?) a l so  

can be discarded. 

h o -  e , as i s  evident from eq0(4.19). 

The o ther  terms i n  Q1, Qz have the norm O( e2 ); i n  par t icular ,  

2 Hence, on subs t i tu t ing  t h e  series (5.6) 

i n t o  Q1, &a, a subs t i tu t ion  of only the main terms F = F,, 19 = P,, UJ = % win 
I 

suffice. On addi t ional ly  expressing S,, @,, with t h e  aid of eqs.(5.3), f 1091 

(5.4), we have 

Let us then calculate  the  Fourier coeff ic ients  of the  functions Qi, & 

according t o  eq.(5.7). F i r s t  of al l ,  on the  basis of eq.(5.U), we have 



~ & W l ~ V F ~ ) d r d y -  - j i (VF,  VFh)& 
4 0 

An integrat ion over the  region D of t h e  functions that are nonzero only i n  

DE reduces t o  an integrat ion over n from 0 t o  OJ (h  rapidly decreases when n -, 

m) a d  tc m ir?t,eg-at.lnn 09p,r the arc E of the contoiir r. Then, t h e  functions 

F,, UF, can be replaced, without reducing the  accuracy, by t h e i r  values over r. 
Note a l so  tha t ,  f o r  6 = 0, it follows f rox  eq.(&.B) t h a t  

0 --- 
Using eqs.(5.13), (5.&), ( 5 0 5 ) ~  we find t h e  required Fourier 

t he  functions Q1, Qa f r o m  eq.(5.12) i n  t h e  form of 

( 5 . W  

coeff ic ients  of 

where ho  is determined by eq.(.!+.l9) f o r  6 = 0, y = const, with L being the 

length of the  contour r: 

Since t h e  Fourier coefficients Qlk, Qa of the  right-hand side of eqs.(5.9), 

(5.10) are O(e”), f o r  terms of the  order of e i n  the  series (5.6) we have a 

homogeneous sSfstem of equations which i s  s a t i s f i e d  by a zero solution. 

words, since t h e  perturbation i s  of the order of c2, the  corrections f o r  t h e  

eigenfrecpencies and eigenfunctions also are of this order. 

= Ak = ak = 0, k = 1, 2, ...) i n  eq.(5.6). 

In other  

Therefore, 1. = 

Using eqs.(5.3), (5.4) we w i l l  transform the series (5.6) i n  the region D: 
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"? 

Let  us next subs t i t u t e  eq.(5.17) i n t o  the  left-hand s ides  of eqs.(5.9), (5.10) 

and equate t h e  Fourier coeff ic ients  of the  left- and right-hand s ides  of these /lo92 

equations. W s  w i l l  yield the  algebraic solutions 

1 + ft"p:.'nr - ftIJ,e2?m = Q* 
( 5  .la 

(5.19) 

-e2!& - e*,!%, + c'b, = vh 
f o r  k = m and 

ftl),.e%a - it%& =I Qthr - E*cz& -+ e% 0 & 
or  

f o r  # m. Fro= t h e  systems (5,181, (5.191, w e  have 

Thus, t h e  problem formulated f o r  the  case of - e r t i c a l  w a l l s  i s  solved. Au. 

t he  nonzero coeff ic ients  of t he  ser ies  (5.6) are expressed by means of eqs.(5.20), 

(5.15), (5.16) i n  t h e  form of wk, Fk, contact angle y, parameters of t he  vessel, 

and propert ies  of the  f l u i d .  

eq.(5.X>), determined with an accuracy t o  within an a rb i t r a ry  term, which can 

be selected on condition of norming the perturbed eigenfunctions. 

corrections calculated in this case are proportional t o  e', i.e., t o  0. 

The coeff ic ients  B,, b, are, by v i r tue  of 

Note that t h e  

In t h e  pa r t i cu la r  case of y = n/2, eqs.(5.15), (5.16) f i e l d  

ha=& %.-a, &=--rUp.' [ R I ; O F ~ ) r J a &  t 
Here, the  perturbation i s  determined by the  i n t e g r a l  with respect t o  the  e n t i r e  

free surface (surface e f f e c t )  . 
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&-I t h e  general case Of y f n/2, eq~~(5.15) contain also in tegra ls  over t h e  

contour r, expressing t h e  boundaq effect  of t h e  meniscus (pronounced curvature 

of t he  free surface a t  t h e  walls). I n  t he  case of m r t i c a l  walls, both e f f ec t s  

(sm€ace and 'm-mdary) are of the s a x  order. 

We W i l l  write t h e  correction f o r  t he  m-th eigenfrequency by using 

ecpD(5.20), (5.15), (5- l6) ,  and (4.9): 

I n  t h e  case of y = n/2, when the  s t a t i c  f r e e  surface i s  ?lane, eq.(5.21) 

w i l l  y i e ld  t h e  formula 

showing that t h e  eigenfrequency increases owing t o  surface tension, which i s  

produced by t h e  e l a s t i c i t y  of the  free-surface film. 

eq.(5.22)] was considered by A.A,Petrov. 

This case [in par t icu lar ,  

A t  y # n/2, eq.(5.21) contains terms 

'associated w'th the  boundary effect ,  which are proportional t o  cos y and /lo93 

The have d i f fe ren t  signs for wetting (y < n/2) and nonwetting (y > n/2) f luids .  

t o t a l  effect  [sign of t h e  e n t i r e  right-hand s ide of eq.(5.21)1 f o r  y # TT/Z may 

differ. 

kt us consider also t h e  case of a two-dimensional motion of t he  f l u i d  i n  

h this case, F = F(x) and t he  free boundary w i l l  be a l i n e  or, 

I n  our calculations, and particu- 

the  plane xz. 

i f  0 = 0, a segment [XI, x ~ l  of t h e  x-axis. 

l a r l y  i n  eqs.(5.5), (5.15), t he  in tegra ls  over the region D m u t  be replaced by 

in t eg ra l s  over t he  segment [xl, x2 1 and t h e  contour in t eg ra l s  over r', b;T t he  

sum of the values of t h e  functions at the points  x = x1 and x = x2. The terms 
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I -  

con tak ing  derivatives t o  s Wiu. be discarded and the  area D Will be replaced 

by the  lecgth of the segment x2 - XI Equations ( 5  .Xj) w i l l  not change, but 

t h e  formula f o r  correction f o r  eigenfrequency w i l l  become 

Equation (5.23) i s  val id  also i n  t he  case where the contact angles d i f f e r  f o r  

x = XI and x = XZ. 

Section 6. Bmmles 

Iet us consider the  osc i l la t ions  of a l i q u i d  i n  a vessel with ve r t i ca l  

walls,  given a constant depth H. In this case, as is  known (BibLEf), 

@ln = e&. y)cosh~(. +'m, 
where t h e  constant k, i s  associated with t h e  frequency w,: 

cunf - Qh*m!l.  (6.1) 

faplacets  ecpation f o r  P, and eqso(5.11) show t h a t  Fm satisfies, i n  the region 

D, the  boundary-value problem 

u-4- kmaJ?m a a  0 in D, 8Fm 18n = 0 in I', (6.2) 

1. Fi r s t ,  l e t  us consider 

t he  xz-plane) i n  a rectangular 

t he  problem (6.2) with respect 

here the  segment [0, a] of t he  

-&% i .-- 

two-dimensional osc i l la t ions  of the  f l u i d  ( i n  

vessel with walls x = 0, x = a. 

t o  eigenvalues i n  this case [ the  region D i s  

x-axis] w i l l  be 

The solut ion of 

Here, c, i s  selected from t h e  norming condition (5.5) and 6,, i s  the  b n e c k e r  
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de l t a .  

= cos y(a>,  simple transfoxmations on the basis of eq.(6.1) Will yie ld  

Substi tuting eq.(6.3) i n t o  the general fom-ula (5.23) w i t h  cos v(C) = 

If I? 4 0, the  coeff ic ient  for cos y i n  eq.(6.4) increases without limits. 

Therefore, f o r  suf f ic ien t ly  small  vessels, the  correction f o r  eigenfrequency i s  

chief ly  determined by the  boundarg effect  and depends on the  wet tab i l i ty  of the 

walls: f o r  the  wet tab i l i ty  (v C n/2), this correction i s  negative and f o r  

the  wet tab i l i ty  (v > 77/2), posit ive.  

H, then the  coeff ic ient  f o r  cos y i n  the parentheses of eq.(6.4) decreases. 

/IO94 

I f ,  on the  other hand, m 4 m f o r  fixed a, 

rn herefore ,  given silfficientlz high frequencies, the frequency correction i s  de- 

termined by the  surface effect ,  i s  posit ive,  and rapidly increases with in- 

creasing m. 

the postulates  of the perturbation theory, u t i l i zed  above, no longer a r e  appli- 

cable. 

For suf f ic ien t ly  large m, this correction becomes so Large that 

O f  greatest  interest  i s  t h e  correction fo r  the  lower nonzero eigenfrequency 

t r ~  (m = I). 

always will increase. 

f o r  ro, may have e i t h e r  sign. 

w i l l  decrease (w < q), as follows from eq.(6.k), f o r  any a, H. 

I f  t he  f l u i d  does not wet t he  walls (v > 77/2), the  frequency w1 

I n  t h e  case of a wetting f l u i d  (y < v/2), t h e  correction 

If cos y > I?/)+ or  y < 38', t he  lower frequency 

2. Let us then consider the  osc i l la t ions  of a f l u i d  i n  a cyl indricdl  

vessel  of a depth H and a radius R. 

have the  following form f o r  a c i r c l e  of radius R (Bibl.12): 

The eigenfunctions of the problem (6.2) 

- d*~ . r l * ( ( lwC R )  rthr rnQr (m) 

where r, P a re  polar  coordinates i n  the Icy-plane, with the  center at  the  cylin- 



der  &s, I J , ~ ~  a re  posi t ive consecutive roots  of t he  der i -mt iws  of Eessel fm-c- 

The nmbers  k,, are related t o  kS by k,,3 = u,, f o r  m = C, 1, 2, ..., 3 = 

= 1, 2, ..., and bo = 0. The frequencies w,, are expressed through k,, by 

the common formula (6.1). 

(6.5) we have (Bibl.12) 

From the noming condition (5.5) f o r  t h e  functions 

m = = O , i , 2  ,..., # - $ , a  .... 
where t h e  frequencies wms a r e  double when m 2 1 and then correspond t o  the  

eigenfurictions F::) , Fi:) froE eq.(6.5). 

case) t he  method of the perturbation theory used i n  Section 5 is ,  generally 

For multiple frequencies (degenerate 

speaking, modified and the multiple frequencies a r e  sp l i t .  In this case, t he  

mul t ip l ic i ty  of t h e  eigenfrequencies of the  cyl indrical  vessel i s  due t o  i t s  

axial symmetry. Since the  perturbation a l so  i s  symmetric ( y  = const), the  

eigenfrequencies of the perturbation problem remain multiple (perturbation does 

not exclude degeneration) . Therefore, t h e  corrections here mar be calculated 

according t o  the  previous formulas. 

eq.(5.21) w i l l  yield 

Substi tuting eqs.(6.5), (6.6) i n t o  

1) 
.e.. 

(6.7) 

As i n  the  case of a rectangular vessel [eq.(6.4)3 f o r  s m a l l  H, t h e  /le95 

pr tnc ipa l  ro le  i n  eq.(6.7) i s  played by the  t e rns  associated w i t h  t he  boundary 

e f fec t  and f o r  h - g e  m, s - by the terns associated with the surface effect .  

The lower nonzero eigenfrequency corresponds t o  the  l e a s t  number w m g ,  equal t o  
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I pn - m i l ,  RI - 1, a tt 1. 

I n  t h e  presence of this natural  osci l la t ion,  the points  of t h e  free surface 

ly ing  on some diameter of the  c i r c l e  r = R remain fixed. The correction f o r  

t h e  frequency wll W i l l  be pos i t ive  f o r  a nonwetting f lu id ,  whereas f o r  a wetting 

f l l l id  it can be of either sign. T h i s  correction w i l l  be negative f o r  any H, R 

provided t h a t  M cos y > 1, where I.; i s  the ~Lr. t -m - xith r e s p c t  tc! H, R - of 

the  coeff ic ient  f o r  cos y within the braces i n  eq.(6.7) a t  m = 1, s = 1. 

i s  readi ly  shown t h a t  this minimum i s  attained a t  H = OD, and eq.(6.7) then can' 

It 

be simplified t o  

Therefore, a t  cos y > h1/2 

osc i l l a t ions  of a f l u i d  i n  a cyl indrical  vessel decreases owing to surface 

tension (no matter what the depth and radius of the vessel) .  

0.92, v C 23' t h e  lower frequency of the  natural  

The authors wish t o  express the i r  grat i tude t o  A.D.Nyshkis and A.D.Tyuptsov 

f o r  reading the  manuscript of this a r t i c l e  and furnishing comments which were  

used i n  f i n a l  edit ing.  
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